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FCT SIMULATION OF HOB AIRBLAST PHENOMENA

I. INTRODUCTION

It is now recognized that height-of-burst (HOB) detora-
tions can create more severe airblast environments than
surface burst (SB) detonations, especially at high over-
pressures. In the HOB case, the spherical blast wave re-
flects from the ground, initially as a regular reflection.
Then at a ground range approximately equal to the height~
of-burst, the shock reflection makes a transition to a
double Mach shock structure. This double shock structure
creates secondary peaks in the static pressure at and near
the ground and thus enhances the early-time HOB airblast
impulses compared to the SB case. As shown experimentally
by H. J. Carpenter at MABS-IV (Ref. 1), these secondary
peaks of the HOB case can be much greater than the first
peaks.

When a double Mach shock structure reflects from an
above-ground structure, it can produce enhanced diffraction
loads. HOB diffraction loads are compared with SB loads in
Fig. 1 which was constructed by scaling data from the
1000-1b Pentolite sphere experiments on the recent MIGHTY
MACH test series (Ref. 2). As is evident from this figure,
the early-time HOB loading impulses are about twice the
SB values. Similar effects are shown in Fig. 1 for the
static pressure histories and impulses which apply to loads
on flush mounted structures.

For military applications, there is a need to simulate
these HOB blast environments on a large scale in order to
test the response and survivability of large-scale or full-
scale military systems. Explosive yields from kilotons to
megatons are required. Suspension of such large high explo-
sive (HE) charges is impractical and could lead to poor
quality blast fields due to interference effects from the
charge support structure.

In this paper we propose a novel approach for simulating
HOB blast environments on a large scale. The concept is
shown in Fig, 2, A hemispherical surface burst HE charge
would be used to create a free-field blast wave. The charge
would be situated near an up-slope which had been graded to
form a large ramp. When the spherical blast reflects from
the ramp, a double Mach shock structure can be created
(within certain constraints on wedge angle, 6y, and inci-
dent shock Mach number). This concept relies on the simi-
larity between the HOB-produced environments on horizontal
surfaces and the environments produced by shock reflections
on wedges or ramps. In Fig. 3 we compare some recent

Manuscript submitted July 22, 1981.
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calculations with the FAST2D code:* a nuclear detonation at
HOB = 104 ft/KTNl/3 versus a Mach seven square wave shock
reflection from a wedge. The pressure contours show that
for similar shock strengths and angles, the shock structures
in the wedge and HOB cases are qualitatively similar; den-
3ity contours are also qualitatively similar with a slip
line emanating from the primary triple point. There are,
however, quantitative differences: the Mach stem structure
in the nuclear HOB case is more complex, with a bulge at
the foot of the Mach stem; also, in the nuclear case, the
reflected shock races rapidly through the high temperature
(104 to 10° oK) fireball, while in the wedge case, the
reflected wave propagates slowly into the lower (103 °K)
temperature constant field behind the incident square wave
shock. We believe, however, that these differences are of
secondary importance.

A remaining question is: how well does the blast wave
from a hemispherical HE charge simulate the nuclear free-
field environment? In Figure 4 we compare the static and
dynamic pressure waveforms for the HE and nuclear cases
from Brode's one-dimensional (]~D) free air burst calcula-
tions (Refs. 3,4) at shock overpressures of approximately
100, 200 and 400 psig. In the HE case a contact surface
(CS) separates the air from the detonation products. This
contact surface causes a sharp jump in dynamic pressure due
to the high densities of the products. Also evident in the
HE case is a secondary shock, Sp, which faces inward but is
being swept outward by the rapid expansion of the charge.
The HE-driven blast wave gives a rather poor simulation of
the complete nuclear waveform at high overpressures, due
principally to the HE contact surface and secondary shock.
However, the HE blast wave outside the ccntact surface is a
reasonably good simulation of the nuclear case. We propose
to use precisely this part of the HE blast wave and reflect
it from the ramp to simulate the early-time nuclear HOB
cases.

The remainder of the paper is organized as follows:
Section II gives a conceptual design of the ramp HOB simu- i
lator; Section 1II describes the 2-D finite difference v
scheme which we used to investigate numerically the flow
fields on and near the ramp; Section IV presents the results
of these calculations, while conclusions and recommenda-
tions are offered in Sections V and VI.

-~

* .

This code uses the Flux Corrected Transport (FCT) algor-
ithm ,described in Section III, to maintain sharp disconti-
nuities.
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II. CONCEPTUAL DESIGN OF THE HOB SIMULATOR

The design objective for this simulator is to produce
the high overpressure (say 100 to 1000 psi) double-peak
flow fields which simulate nuclear HOB detonations in the
Mach reflection regime with high fidelity. The simulator
should be reasonably inexpensive and readily constructed.
The design concept should be extendable to large yields.

The primary design parameters for the simulator are the
location of the front edge of the ramp, GRg, and the ramp
angle, Oy. The conceptual design process begins with an HE
free-air pressure-range curve for 1 1b of Pentolite. A
ramp was assumed to be located at a GRy corresponding to
free field shock overpressures of 500 psi or 150 psi.
Assuming various ramp angles, we used reflection factors
(Ref. 1) to determine the peak static pressure versus ramp
ground range, RGR. Parametric results are presented in
Fig. 5. TInserts give the results scaled to a 500T
surface burst which are equivalent to about a ome-kiloton
nuclear surface burst case. Examination of the results in

Fig. 5 indicates the following trends:

o A requirement for a high pressure (400 psi to 600
psi) simulator forces omne to either move the ramp
closer to the charge, or increase the ramp angle,
or both.

o One would prefer to move the ramp away from the
charge so that the HE free field is close to the
nuclear case; however, this leads to large (and
presumably impractical) ramp angles.

o Decreasing the ramp angle tends to make the Mach
stem rise more rapidly thus increasing the separa-
tion between the first and second peaks; we specu-
late that this could lead to a yield amplification
on the front-end of the waveform.

o Tramsition to Mach reflection occurs at the leading
edge of the ramp for Oy = 30 and 407; the transi-
tion point (TP) for the 6y = 60° occurs at about
one-half the distance up the ramp.

The 30° ramp at the 500 psi station appears to be an
interesting case--it is feasible to construct and the 600-
psi shock overpressure will occur at about 50 ft up the
ramp, thus allowing plenty of time for the Mach stem height
to grow. Peak pressures will range from 1500 psi at the
beginning of the ramp to about 300 psi at the far end.




IIT. COMPUTATIONAL TECHNIQUE

A numerical simulation of the shock diffraction for the
ramp HOB simulator {(a 30  ramp starting at 200 feet from a
500T hemispherical HE charge) was performed with a nons“eady
two~dimensional (2-D) hydrocode, FAST2D. The objectives of
the calculation were to validate the ramp HOB simulator
design and to evaluate, in detail, the flow field in the
vicinity of the ramp. The FAST2D code solves the balance
laws of gasdynamics on a sliding grid in the general form:

B_at:f¢dv=_ d)(g—u)'dé*-deA 1)
sV(t) SA(t)” B SA(L)

where ¢ represents the mass, momentum, energy or species mass
density (for multi-material calculations) in cell &V(t),

u and ugp represent the fluid and grid velocities, respect-
ively, and T represents the pressure/work terms. The finite-
difference approximation to Eq. (1) uses a vectorized Flux-
Corrected Transport (FCT) algorithm, ETBFCT (Ref. 5), which
gives an accurate and well-resoclved description of shock

wave propagation without the necessity of an a priori know-
ledge of the number, location or character of the gas-
dynamic discontinuities in the problem. The linear portion
of this algorithm is fourth-order-accurate spatially for
constant-velocity advection problems, and has a nonlinear
flux-corrected antidiffusion stage which automatically pro-
vides the-local dissipation needed to accurately model dis-
continuities. The formulation of the algorithm allows the
grid to slide with respect to the fluid without introducing
additional numerical diffusion. This general adaptive
regridding technique permits fine zones to be concentrated

in the region of greatest physical interest, thus reducing
computational costs with no serious loss in resolution.

Since the ETBFCT algorithm is one-dimensional,
time -splitting must be employed to solve two-dimensional
problems. Time-splitting makes the boundary condition on
the ramp particularly easy to implement. The ramp is
represented as a series of "stairsteps" (of varying height
and depth) along the interface between the extremal interior
zones and a corresponding set of guard cells., A guard cell
is defined as the right-most cell in the r-direction
during the r-sweep, and the bottom-most cell in the z-
direction during the z-sweep. The stairstep boundary con-
ditions are reflective,which requires pressure, density
and energy to be continuous and the corresponding velocity
normal to the stairstep to vanish.




The numerical simulation began with a 1-D FCT calcula-
tion of the blast wave driven by a one pound spherical
charge of PBX-9404 in air. The initial conditions, which
are shown in Fig. 6, were takean to be the self-similar
flow field corresponding to a spherical Chapman-Jouguet
detonation wave (Ref. 6), at the time the ?7§onation wave
reaches the charge radius, rj = 3.89 cm/1b A Jones-~
Wilkins-Lee (JWL) equation of state (EOS) was used for
the detonation products and a real air equation of state
was used outside the HE/air interface. These EOS specify
the pressure as a function of density and internal energy.
The HE/air interface was followed by solving a conserva-
tion law for the mass fraction pf (where f=1 in the pure HE
and f=0 in the pure air). The equations of state were
blended in the mixed cells (0<f<1) according to Dalton's
law, A fixed grid gf 500 cells was used with a mesh spacing
Ar = 0.1025 cm/1b1/3, so that the initial flow field in the
charge occupied about 38 computational cells. The flow
field results 7t the end of the 1-D calculation (cycle 1281,
t = 152 ps/1bl 3) are shown in Fig. 6. The shock over-
pressure is 445 psig. The density distribution shows a
jump at the HE/air interface; inside the interface is a
secondary inward-facing shock which is being swept outward
by the supersonic flow.

These results were scaled up to the 500 ton HE surface
burst case by multiplying all times and ranges by the scale
factor, SF = (2x106)1/3 = 125.992, The shock radius at
this time of 19.15 ms/500T1/3 was found to be 198 ft/500T1/3
with an overpressure of 445 psig (note that this point
checks with the HE free air curve in Fig. 5). These
results were then inserted as initial conditions in the
cylindrical r-z FAST2D code, with one approximation. Since
the Y's ahead and behind the HE/air interface were quite
close (yyg = 1.25 versus Y.y, = 1.30), the HE products were
modeled with the real air equation of state, and the 2-D
interface was not followed specifically with a mass species
conservation law. The 2-D mesh consisted of 150 x 150
cells with a moving fine mesh region (55 x 55 cells, Ar =
5 cm and Az = 2.8868 cm with Az/Ar = tan 300) which followed
the Mach stem. The calculation was run 5601 cycles. Diag-
nostics for the 2-D calculation consisted of 46 environment
time histories (at 40 stations on the ramp and 6 stations
perpendicular to the ramp at a RGR = 60.5 ft) and contour
plots of the flow field every 200 cycles. Times are
denoted by the label At=t-to,which references everything
to the incident shock arrival time at the foot of the ramp
to-19.2 ms.




IV, CALCULATIONAL RESULTS

An overall picture of the spherical shock reflection
from the ramp is displayed in Fig. 7 which gives the cal-
culated pressure and density contours at various times
(Qt=3, 5.61, 9.27 and 13.4 ms/500T1/3); rig. 8 gives a
magnified view of the flow field at At=9.61 ms/500T1/3.

The shape of the shock structure for the simulator (i.e.,
the geometry of the incident wave, the Mach stem, and the
kinked reflected wave) more c’osely resemble the shock
structure for square wave reflections from a ramp (Ref. 7)
than the nuclear HOB case (see Fig. 3). The density
contours indicate that a contact surface (a slip line)
emanates from the triple point (the confluence of the inci-
dent, Mach and reflected waves) and approaches the ramp at
an angle of about 60°. Pressure contours indicate that a
high pressure region is located in the vicinity of where
the projection of the contact surface would strike the ramp.

Figure 9 gives an experimental shadowgraph of the shock
wave structure formed by an 8 1b TNT driven blast wave
(HOB = 1.04 ft/lbl/3) diffracting on a 31° ramp. The inci-
dent shock pressure was about 120 psi at the foot of the
ramp and about 75 psi at the time of the photograph (com-
pliments of W. Dudziak, Ref. 8). The shock structure is
qualitatively similar to that in Figs. 7 and 8. Fig. 9
shows that the reflected wave pushes the TNT products away
from the ramp, thus maintaining a clean air flow (unpolluted
by HE products) in the Mach stem region--a truly beneficial
result! Note that this happens even in the low HOB case
where the TNT products squish along the ground and push the
TNT/air interface closer to the shock.

The calculated shock properties for the ramp HOB simu-
lator are shown in Fig. 10 as a function of ramp ground
range, RGR. The primary Mach stem pressure, p;, ranged
from about 600 psi to 400 psi. The second peak pressure,
p2, decayed from 1300 psi at the foot of the ramp to 400
psl at the 60 foot station. The peak pressures were deter-
mined from two methods: for RGR < 30 ft peaks were evaluated
from pressure distributions at a fixed time, and these data
are somewhat noisy due to the stairstep boundary condition
modeling of the ramp; for RGR > 30 ft, peaks were evaluated
by smoothing the pressure time histories two cells above
the ramp, giving a smooth pressure-range curve.* Note
that the second peaks are in reasonably good agreement with

*
Unfortunately the pressure histories for RGR < 30 ft were
not available for data analysis.
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the prediction technique used to design the simulator. Also
note that for RGR > 40 ft the first and second peaks are
equal.

The calculated shock arrival times for the first and
second static pressure peaks are included in Fig. 10
The arrival time difference between peaks grows rapidly for
the first 30 feet up the ramp, and then remains constant at
about 1ms/500T1/3. 1In addition, Fig. 10 depicts the Mach
stem growth versus ramp ground range. The top of the Mach
stem traces a path at an average angle of about 9 degrees
above the ramp surface, which is consistent with shock tube
data for square wave shock reflections from wedges (Ref. 7).
Note that the Mach stem growth for the equivalent nuclear
case is more rapid than in the case of the simulator.

Calculated static pressure histories are presented
in Fig. 11 for various stations on the ramp (34 ft < RGR <
60 ft). The second peak dominates for RGR < 34 ft, and
then gradually melts into backside of the waveform. For
RGR > 60 ft, the second peak has essentially disappeared.
Comparisons of static pressure histories at h = 0, 1 and
5.5 ft normal to the ramp for station 17 indicate that
there is no vertical pressure gradient on the front end of
the waveform.

Fig. 12 gives the calculated dynamic pressure his-
tories on the ramp at stations corresponding to the static
pressure histories of Fig. 11. At small ground ranges,
the second peak dominates the first peak. The second peak
decays in magnitude and duration as the Mach stem pro-
gresses up the ramp, and has essentially disappeared for
RGR > 60 ft. Comparisons of dynamic pressure histories at
h =0, 1 and 5.5 ft normal to the ramp for station 17 indi-
cate very little vertical gradient for times less than 0.8
ms after shock arrival. However, the h = 1 ft station
shows a strong second peak at about 1 ms which is absent
from the h = 0 and 5 ft records. We believe that this is
caused by a high density slug of gas at this altitude. A
slip line (with high density material above and lower den-
sity material below) emanates from the triple point. As
the slip line approaches the ramp it curls forward forming
a region of high density fluid near the ramp surface (h ™
1 ft/500T1/3) while the Mach stem at this station is abaut
10 ft high., This effect is similar to the contact surface
rollup observed in numerical simulations of nuclear HOB
detonations and square wave shock reflections from wedges
(Ref. 9). This increase in dynamic pressure near the ramp
can be very important to airblast loads on above ground




structures--it increases both the peak loads and the
impulses to approximately 2 ms/500T1/3,

Let us now relate the simulator environment to an equi-
valent nuclear height-of-burst case. Fig. 13 gives the
ideal, auclear peak overpressure HOB curves as constructed
by H. J. Carpenter (Ref. 10). Region A corresponds to the
regular reflection regime, and region B corresponds to the
Mach reflection regime where the static pressure waveforms
on the ground contain two peaks. 1In regions Bl and By,
first and second peaks dominate, respectively. Along the
dashed curve the first and second peaks are 2qual. Figure
9 indicates that for 30 ft < RGR < 60 ft, first and second
peaks are equal and range from 600 psi down to 400 psi.
Figure 13 then indicates that for this range in pressure,
the nuclear HOB parameters are the following:

1/3 1/3
/3 1/3

100 ft/KT HOB 5_120 ft/KT
190 ft/!('rl GR < 210 ft/KT

Thus the simulator as analyzed in this report gives an air-
blast environment which is equivalent to a nuclear detona-
tion at height-of-burst of_about 110 £t/KT1/3 and a ground
range of about 200 fr/kTi/ 2,

<
<

Finally, let us consider the effective yield of the
simulator. A 500T high explosives surface burst procduces
a blast wave flow field which is equivalent to about a 1-KT
nuclear surface burst (or a 2-KT nuclear free air burst).
Nuclear static pressure waveforms in the 400 psi to 600 psi
Mach reflection regime have double pe7ks with a time separa-
tion between peaks of about 2 ms/KTNl 3 (Ref. 10). The
FAST2D calculation of the simulator flow field ipdicates a
time separation between peaks of about 1 ms/SOO%E;SB, i.e.,
the time separation for the simulator is too small by a
factor of about two. We believe that the time separation
between peaks can be increased by making the Mach stem
climb more rapidly. This can be accomplished by simul-
taneously decreasing the ramp angle and moving the ramp
toward the charge.

V. SUMMARY AND CONCLUSIONS

Height-of-burst detonations create airblast environments
and diffraction loads which are more severe than the surface
burst case in the high overpressure Mach reflection regime.
There 1is an ongoing need to simulate these HOB environments
on a large scale to validate the survivability of military
systems to blast effects. We propose using an existing
high explosives test bed, say a 500T hemispherical charge,




r

wpr—r

to create the free field blast environment. A large ramp
would be located near the charge. Shock diffraction on the
ramp generates, in a rather natural way, a flow field which
simulates the HOB blast environment with high fidelity.

A parametric analysis of such HOB simulators indicates
that a 30° ramp situated about 200 feet from a 500T hemis-
pherical charge would give useful environments. The flow
field details near such a ramp were investigated with a 2-D
hydrocode calculation. The calculation indicates that
double peaked static and dynamic pressure waveforms were
created near the ramp surface. In the 400 to 600 psi range,
the calculated first and second static pressure peaks were
equal. By use of the nuclear HOB curves, it was determined
that the blast flow field corresponds to a nuclear detona-
tion at a height-of-burst of 100 to 120 £t/KTyl/3 and a
ground range of 190 to 210 ft/KTN1/3. Time separations
between static pressure peaks were found to be about 1 ms/
SOOT& ?SB; this value was too small by about a factor of
two for the nuclear case.

VI. RECOMMENDATIONS

Additional analysis should be performed to refine the
HOB simulator design. The 2-D hydrocode simulations are
quite useful because they allow one to examine the entire
flow field in a non-interfering way. An improvement is
needed on the boundary condition modeling of the ramp--the
stairstep model gave very noisy results on the ramp surface.
Small charge (say 4-1b hemispherical PBX-9404 charges) tests
can provide an experimental definition of the blast envirom-
ment. Ramp angle, location and surface curvature could be
varied parametrically in such tests. Pressure gauges on
the ramps can measure static pressure histories with high
fidelity, while shadowgraph photography can capture the
shock structure on the ramp. These results could be used
to design a simulator which, we suggest, should be fielded
on the next 500T HE test.
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HOB Simulator

Fig. 2 — HOB simulator concept (graded ramp) on a large-scale HE test
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Fig. 7 — Calculated pressure and density contours at times At = 3.0, 5.61,
9.27, and 13.4 ms/500 T1/3 (1, = 19.2 ms/500 T1/3)
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Fig. 9 — Shadowgraph of the shock wave structure formed by an 8-Ib TNT-driven
blast wave (HOB = 1.04 ft/ib1/3) diffracting on a 31° ramp; incident pressure at
the beginning of the ramp was about 120 psi. (Courtesy of W. F. Dudziak.
Information Science, Inc.)
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